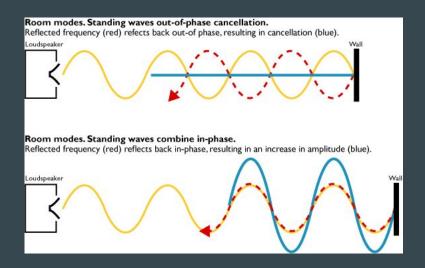
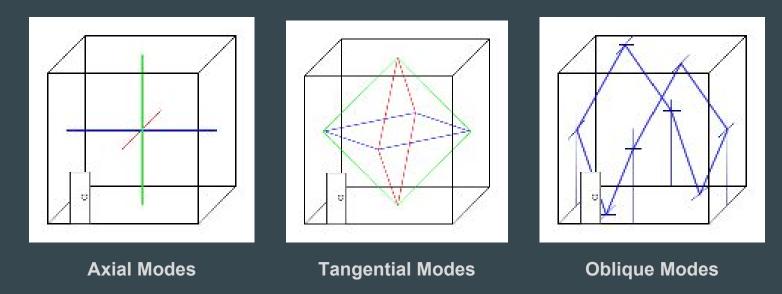
Room Acoustics


A presentation by Ethan Harte

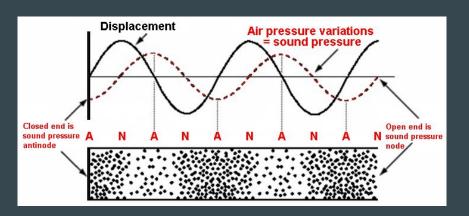
The Ideal Listening Experience

The speaker is the only sound the listener should hear.


Standing Waves (Room Modes)

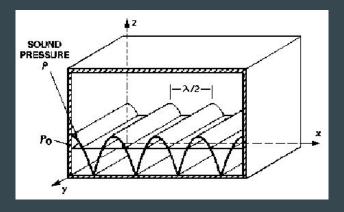
Standing Waves:

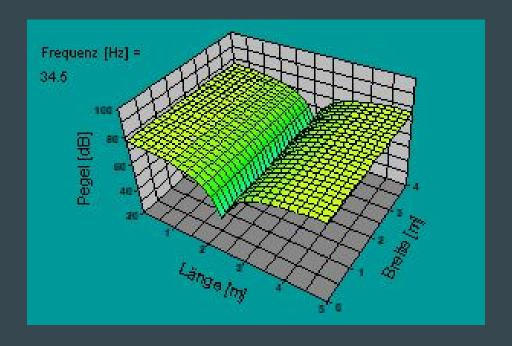
- Deconstructive interference eliminates certain frequencies
- Constructive interference amplifies certain frequencies and can cause *ringing*, which is when the signal has some decay time.


Types of Room Modes

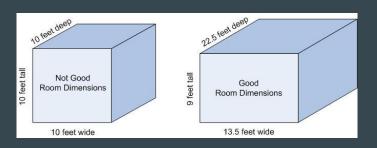
Room Mode Frequencies Occur at:

$$f = \frac{c}{2} \sqrt{\left(\frac{n_x}{L}\right)^2 + \left(\frac{n_y}{W}\right)^2 + \left(\frac{n_z}{H}\right)^2}$$

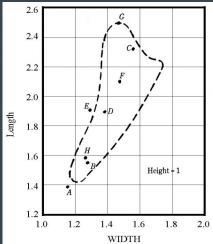

How do Room Modes Affect Sound?


Sound Pressure Vs. Sound Displacement:

- Maximum pressure occurs when the air particles are either very dense or very sparse.
- Maximum displacement occurs when a particle has been moved the farthest from it's original location.


We hear sound pressure, not sound displacement.

Sound Pressure Inconsistencies


Solution?

Avoid Rooms with a L, W, and H that are multiples of each other.

This is to avoid having the same frequencies become room modes for each axis in the room.

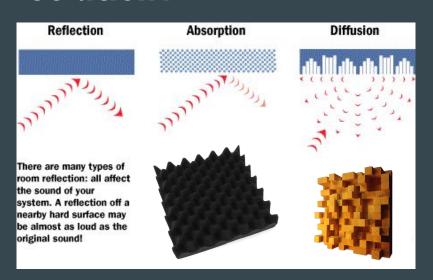
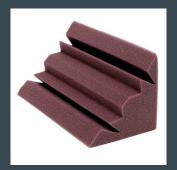

"Bolt Area" Chart:

Table 13-2. Rectangular room dimension ratios for favorable mode distribution.


	Author		Height	Width	Length	In Bolt's range?
1.	Sepmeyer ⁵	Α	1.00	1.14	1.39	No
		В	1.00	1.28	1.54	Yes
		C	1.00	1.60	2.33	Yes
2.	Louden ⁶	D	1.00	1.4	1.9	Yes
	3 best ratios	E	1.00	1.3	1.9	No
		F	1.00	1.5	2.5	Yes
3.	Volkmann³ 2:3:5	G	1.00	1.5	2.5	Yes
4.	Boner ⁴ 1: ³ √2: ³ √4	Н	1.00	1.26	1.59	Yes

Solution?

Room Treatment:

- Absorption material can be placed to reduce reflections. This reduces the room mode effects as well as reducing unwanted delay/echo.
- *Diffusion material* is useful because it can reduce the listener's ability to be able to pinpoint a reflection.

Bass Traps are a type of absorption material designed for low frequencies. They are usually placed in corners since the sound pressure level of low frequencies builds in corners.

References

http://arqen.com/wp-content/gallery/room-setup-acoustic-treatment/surround-mixing-listening-room-acoustic-treatment-l.jpg

http://www.planetoftunes.com/sound-audio-theory/so_media/standing_waves.gif

http://images.crutchfieldonline.com/ImageBank/v20040123171100/ImageHandler/scale/646/646/ca/reviews/20040120/roomacoustics1dd.gif

http://digitaldeconstruction.com/wp-content/uploads/2016/02/The-Worlds-Quietest-Room.jpg

http://www.sengpielaudio.com/calculator-roommodes.htm

http://www.audioholics.com/room-acoustics/listening-room-acoustics-1

http://iribsupport.ir/Books/Acoustic/master_handbook_of_acoustics.pdf